
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 7543–7560

www.elsevier.com/locate/jcp
A Lagrangian finite element method for simulation
of a suspension under planar extensional flow

M. Ahamadi *, O.G. Harlen

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

Received 14 August 2007; received in revised form 2 January 2008; accepted 23 April 2008
Available online 13 May 2008
Abstract

A numerical simulation of a suspension of two-dimensional solid particles in a Newtonian fluid under planar exten-
sional flow is presented. The method uses a finite element solution of the flow with a unit cell within the self-replicating
lattice for planar extensional flow identified by Kraynik and Reinelt [A.M. Kraynik, D.A. Reinelt, Extensional motions
of spatially periodic lattices, Int. J. Multiphase Flow 18 (1992) 1045]. This is implemented using a quotient space repre-
sentation that maps all points space onto points within the unit cell. This mapping is preserved by using fully Lagrangian
grid movement, with grid quality preserved by a combination of Delaunay reconnection and grid adaptivity. The no-slip
boundary conditions on the particles are enforced weakly via a traction force acting as a Lagrange multiplier. The method
allows simulations of suspensions under planar extensional flow to be conducted to large strains in a truly periodic cell.
The method is illustrated for both isotropic and anisotropic two-dimensional particles and can be easily extended to vis-
coelastic fluids and to non-rigid particles.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Particle suspensions have a wide variety of industrial uses and also characterise many food stuffs and bio-
logical fluids. Even in Newtonian fluids, suspensions exhibit complex rheological proprieties such as non-zero
normal stress differences in shear. The challenge is to understand how these macroscale proprieties arise from
the mesoscale structure on the scale of the suspended particles. Despite a considerable amount of progress in
the theory of suspensions over the past century, the question of the detailed interactions between solids and
liquids is still open and direct simulations of the exact particle motions in liquid provide an important tool for
studying the rheology of such multiphase systems.

For Newtonian fluids a number of different simulation techniques have been developed. These include the
Stokesian dynamics method of Brady and Bossis [4], dissipative particle dynamics [3] and the lattice Boltz-
mann method [6]. Several different finite element based simulation techniques have also been developed.
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Hu [14] used an Arbitrary Lagrangian method to deal with the time-dependent flow domain of the fluid region
in an evolving suspension. An alternative method developed by Glowinski et al. [9] used a Lagrange multiplier
fictitious domain method to impose the boundary conditions on the particles. Recently Hwang et al. [13]
extended the fictitious domain method to apply sliding biperiodic boundary conditions for a suspension of
particles under shear.

In principle the bulk rheology of the suspension is found by subjecting an infinite domain of suspension to
an average velocity gradient. This can achieved experimentally provided that the suspended particles are small
compared to gap size in the rheometer. In numerical simulations the infinite domain is replaced by a spatially
periodic structure based upon a unit cell containing a limited number of particles. The most commonly studied
flow is simple shear flow, as this is the easiest flow to reproduce experimentally and it is relatively straightfor-
ward to impose the spatially periodic motion of the unit cell on a self-replicating lattice. However, in this paper
we shall consider planar extension or pure shear flow. Planar extensional flow occurs when a fluid is extended
in one direction and contracted in the perpendicular direction as shown in Fig. 1. The rheological properties of
suspensions in extensional flow are important in a number of areas, including the spinning of multiphase syn-
thetic textile fibres. Despite extensional flow being studied extensively both theoretically and experimentally
[19], there are relatively few numerical simulations of suspensions in extensional flows [7,12].

Unlike simple shear flow, extensional flow involves a change in the shape of the unit cell within the com-
putational domain. In this study we use the self-replicating Kraynik–Reinelt lattice structure to impose the
periodic structure on a two-dimensional computational domain undergoing planar extension. All the particles
considered in this paper are hard non-Brownian circular or elliptical particles with aspect ratio less than 10,
however, the methodology can easily be extended to other particle shapes. A fully Lagrangian finite element
method is used to solve the flow around the particles. For a Newtonian fluid the principal advantage of this
approach is that it provides a natural way to implement the biperiodic boundary conditions and particle
motions in the Kraynik–Reinelt lattice. However, for a viscoelastic fluid it has further advantage of enabling
the constitutive equation to be solved in the co-deforming frame of the fluid [10]. The suspended particles are
modelled by imposing a surface force density around the surface of each particle that acts as a Lagrange mul-
tiplier to enforce the fluid inside each particle to behave as a rigid solid.

2. Computational domain

The idealised problem we wish to consider is a two-dimensional unbounded domain, X1(t), containing
non-Brownian hard circular or ellipsoidal particles suspended in Newtonian fluid under a planar extensional
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Fig. 1. (a) Particle paths in planar extensional flow. (b) The unit cells in the critical lattice.
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flow. In order to make the computations tractable we approximate the fluid microstructures by a spatially
periodic fluid microstructure. Therefore we solve the flow in an initially rectangular unit cell of size H � K
containing N particles, X(t) that when periodically extended covers the infinite domain.

Under the action of the velocity gradient, the unit cell within the lattice deforms and in order to be able to
continue to large strains it is desirable to use a self-replicating lattice that recovers its original geometry after a
period of strain. In shear flow, this can be achieved using the Lees–Edwards [17] lattice in which cells slide
across one another in layers parallel to the flow direction. However, in a purely extensional flow (see
Fig. 1b), a rectangular lattice aligned along the principle flow axes will not periodically replicate its structure.
A lattice of this type, suggested by Heyes [11] is used in the simulation method developed by Hwang and Hul-
sen [12] for planar elongational flow of suspensions in a Newtonian fluid. However, because the aspect ratio of
the unit cell increases exponentially in time their simulations are limited to moderate strains. D’Avino et al. [7]
have recently developed an alternative fixed grid method for simulating extensional flow. This does not use
periodic boundary conditions but uses a three layer domain in which particles leaving the domain are reintro-
duced at random positions on the inlet boundaries in order to achieve steady state.

Kraynik and Reinelt [16] found a family of periodically replicating lattices for planar extensional flow. In
particular they showed that the square lattice with the minimum period for replication was one where the sides
are aligned at an angle of approximately 31.7� to the principal axes of the flow. Unlike the Heyes structure,
this Kraynik–Reinelt structure allows calculations to be performed indefinitely since the shape of the initial
unit cell may be recovered after each strain period, �p. In this paper we show how the Kraynik–Reinelt lattice
structure may be implemented in a finite element simulation by using an appropriate image system to map
positions in the infinite domain X1(t) to positions in the computational domain, X(t).

2.1. Kraynik–Reinelt lattice

In this section we outline the main result of the Kraynik–Reinelt lattice structure, further details are given
in Ref. [16]. As depicted in Fig. 1, we define the x and y direction to be the axes of extension and compression
respectively in a flow with strain rate _�. A two-dimensional square lattice L(t) = n1p(t) + n2q(t), where p(t), q(t)
are linearly independent basis vectors and n1, n2 integers, is reproducible or strain periodic if and only if there
exists an integer matrix,
N ¼
N 11 N 12

N 21 N 22

� �
; ð1Þ
such that
pðtÞ ¼ DðtÞp0 ¼ N 11p0 þ N 12q0;

qðtÞ ¼ DðtÞq0 ¼ N 21p0 þ N 22q0;
ð2Þ
where DðtÞ ¼ e_�t 0
0 e�_�t

� �
is the strain. Here, the vectors p0 ¼ p0

1

p0
2

� �
and q0 ¼ q0

1

q0
2

� �
are the initial linearly inde-

pendent lattice basis vectors, which satisfy p0 � q0 = 0 for a square lattice.
The vector equations (2) can be rewritten in the form of the following two eigenvector problems,
N 11 � k N 12

N 21 N 22 � k

� �
p0

1

q0
1

" #
¼

0

0

� �
and

N 11 � k�1 N 12

N 21 N 22 � k�1

" #
p0

2

q0
2

" #
¼

0

0

� �
; ð3Þ
where k ¼ e_�t.
The problem of reproducibility has now been reduced to finding an eigenvalue k, the strain period, with

eigenvectors,
p0

1

q0
1

� �
and

p0
2

q0
2

� �
giving the basis vectors of the lattice. For a square lattice the basis vectors must

be orthonormal and so can be written in the form,
p0 ¼
cosðhÞ
sinðhÞ

� �
; q0 ¼

� sinðhÞ
cosðhÞ

� �
; ð4Þ
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where the angle h must satisfy
h ¼ tan�1 N 11 � e�p

N 12

� �
: ð5Þ
The integer matrix with the minimum eigenvalue is found to be N11 = 2, N12 = N21 = �1 and N22 = 1 for
which the Hencky strain period �p = log k is equal to
�p ¼ log
3þ

ffiffiffi
5
p

2

 !
¼ 0:9624:
The corresponding lattice angle h is given by
h ¼ tan�1 2

1þ
ffiffiffi
5
p

� �
¼ 31:7�:
Thus for this initial orientation the square lattice will reproduce itself after a strain of �p in the sense that
vertices of the original lattice move to other vertex points of this lattice. Note that the period of reproducibility
depends only on the Hencky strain and so this lattice may be used for a variable strain-rate simulation pro-
vided that the principle axes of strain remain constant.

3. Governing equations

Consider a flow described by the mapping wðX ; tÞ relating the position of a fluid particle at time t to its
Lagrangian coordinate, X in the original unit cell, X(t0),
x ¼ wðX ; tÞ: ð6Þ

Assuming the flow is incompressible, isothermal and inertialess, the equations of conservation of momen-

tum and mass are given respectively by
rij;j ¼ 0 in X;

ui;i ¼ 0 in X:

�
ð7Þ
Here ui ¼ _wi � w�1 are the components of the spatial velocity vector, X = w(X(t0)) is the flow domain at time t

with boundary oX = ow(X(t0)). For a Newtonian fluid, the Cauchy stress tensor rij is given by
rij ¼ 2ldij � pdij; ð8Þ

where l is the fluid viscosity, dij is the rate of deformation tensor defined as
dij ¼
1

2
ðui;j þ uj;iÞ ð9Þ
and p is the pressure.
The extensional flow is imposed through the boundary conditions of the computational domain, which will

be discussed in Section 5.

3.1. Particles

The filler particles are assumed to be rigid and subject to zero net force and couple. Assuming that there is
no slip between the filler particles and the fluid matrix, the fluid velocity at the surface of particle l is given by
u ¼ Ul þ xl � ðx� XlÞ; l ¼ 1; . . . ;N ; ð10Þ

where Ul and xl ¼ xlẑ are the unknown velocity and angular velocity of particle l (with ẑ the unit vector in the
ẑ direction). To enforce these boundary conditions we impose a surface force density
f l
i ðsÞ ¼ rijnj; ð11Þ
around the surface of the particle l as a Lagrange multiplier to force the fluid inside particle l to behave as a
rigid solid. Here nj is the outward unit normal to the boundary of particle Pl.
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The angular velocity xl and the translational velocity Ul are found from the conditions of no net force and
torque on each particle,
Z

oP l

fl ds ¼ 0; l ¼ 1; . . . ;N ; ð12ÞZ
oP l

ðx� XlÞ � fl ds ¼ 0; l ¼ 1; . . . ;N ; ð13Þ
where fl is the traction force density vector on particle l. The motions of particles are described by the kine-
matic equations
dXl

dt
¼ Ul; Xljt¼0 ¼ Xl;0; l ¼ 1; . . . ;N ; ð14Þ

dHl

dt
¼ xl; Hljt¼0 ¼ Hl;0; l ¼ 1; . . . ;N ; ð15Þ
where Hl is the angular rotation of particle l. Note that the kinematic equations (14) and (15) are decoupled
from Eqs. (10), (12) and (13). Hence these equations of motions can be solved separately by using a standard
ordinary differential equation method as we will describe later in Section 6.

The quantity measured in rheological experiments is the spaced averaged stress of the suspension. We shall
refer to this as the ‘‘bulk” stress to distinguish it from time-averaged quantities. Batchelor [1] derived an
expression for the bulk stress in a suspension as sum of the stress in the fluid phase plus a contribution from
the surface forces on the particles, in the form
hriji ¼
1

V

Z
V f

rij dV f þ
1

2

Z
oP l

ðxi � X iÞfj þ fiðxj � X jÞds
� 	� �

; ð16Þ
where Vf is the volume of the fluid phase.

4. Finite element formulation

In the Lagrangian finite element method the deforming computational domain is discretized by means of a
finite element mesh that deforms with the flow. To render Eqs. (7), (10), (12) and (13) in finite element form, we
need to derive their Galerkin weak form. Note that the equation for the fluid momentum (7) is coupled
through the no-slip condition equation (10) and through the equations for zero hydrodynamic force and tor-
que satisfied by the traction force. Therefore we shall adopt the combined equation of motion of Glowinski
et al. [9] to derive the weak form of the equation for the solid–liquid mixture.

The natural combined velocity space for the fluid and particle velocities is given by
V ¼ fðv;V l; nlÞjv 2 H 1ðXÞ2;V l 2 R2; nl 2 R; v

¼ V l þ nlẑ� ðx� X lÞ in P lðtÞ; and v biperiodic on oXg: ð17Þ
In the distributed Lagrange multiplier method the extended weak form for whole domain can be obtained
by removing the constraint equation (10) from the velocity space and enforcing it weakly as a side constraint.
This is done by introducing a Lagrange multiplier (fl(s) in our case), which can be interpreted as the traction
force required to maintain the rigid-body motion of particle Pl(t). In our methodology, the constraint equa-
tions (12) and (13) are used to determine the unknown Ul and xl and therefore they must be incorporated into
the final weak form.
Z

X
�pr � wdV þ l

Z
X
ru : rwdV �

XN

l¼1

Z
oP lðtÞ

fl � wdS ¼ 0; ð18Þ

�
Z

X
qr � udV ¼ 0; ð19Þ
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�
Z

oP lðtÞ
fl � ðu� ðUl þ xl � ðx� XlÞÞÞdS ¼ 0; ð20ÞZ

oP lðtÞ
fl dS ¼ 0; ð21ÞZ

oP lðtÞ
fl � ðx� XlÞdS ¼ 0; ð22Þ
where l = 1, . . ., N and w, q, fl are respectively the variations for the fluid velocity, pressure, and traction force.
We use triangular P1–P1 elements, which have linear continuous pressures and velocities, and a continuous

linear interpolation for the force density fl around the particles to discretize the weak form (Eqs. (18)–(22)).
The element combination P1–P1 for the velocity and pressure is unstable to spurious pressure modes. These
are removed by introducing a pressure stabilisation in which the weak form of continuity equation (19) is
replaced by
�
Z

X
qr � udx� b

Z
X

h2rq � rp dx ¼ 0; ð23Þ
where h2 is twice the area of the triangle and b is a positive constant. Following Silvester and Wathen [23], we
choose b = 0.025 as this gives the optimal convergence rate for the Stokes problem.

For a given finite element mesh and particle configuration, the discretization of the weak form Eqs. (18)–
(22) leads to the following linear system of algebraic equations
A B D 0

BT �C 0 0

DT 0 0 E

0 0 ET 0

26664
37775

eU
PeF
V

26664
37775 ¼

F 1

F 2

F 3

F 4

26664
37775: ð24Þ
The vectors eU, P, eF and V are respectively the velocity of the fluid, the pressure, the traction force densities,
and a vector composed of the translation and rotational velocities of each particle. The vectors on the right
hand side Fi, i = 1, . . ., 4 are forcing term resulting from the Kraynik–Reinelt boundary condition which will
be described in the next section. The matrices A, B and �C arise from stabilised Stokes problem for the fluid
phase, while the matrices D and E arise from the traction forces and no-slip boundary condition on the par-
ticle surface. The linear system of algebraic equations (24) is solved using a preconditioned conjugate residuals
method with a block preconditioner of the form suggested by Silvester and Wathen [23].
5. Moving mesh implementation of Kraynik–Reinelt cell

In Section 2.1 we defined the structure of the Kraynik–Reinelt lattice, which provides a periodically repli-
cating lattice for planar extensional flow. The biperiodic boundary conditions also allow particles to migrate
through the cell and re-enter through the opposite boundary. In order to satisfy biperiodicity of the discrete
finite element initially we generate a biperiodic mesh for the computational domain, X(t0), in which the nodes
on opposite edges are identified as being equivalent points. This equivalence can be extended further by noting
that every point in the computational domain has an equivalence class of image nodes in the infinite domain,
X1.

We will use this equivalence class to maintain the periodic structure as the domain deforms. Let � be an
equivalence relation on V ¼ R2 defined by
x � r() 9m 2 Z; n 2 Z such that x ¼ rþ mpðtÞKþ nqðtÞH ð25Þ
and W ¼ fða; bÞ 2 R� R such that 0 6 a 6 K and 0 6 b 6 Hg is the computational domain, X(t). The quo-
tient space R2=W contains all equivalence classes of the equivalence relation (25). Furthermore the function Q
defined as
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Q : R2 ! R2=W;

ximag 7!QðximagÞ ¼ ½xlattice�
ð26Þ
is the quotient map allowing us to identify all images. From the general form of the quotient map, Eq. (26),
one can derive an explicit relation between a point in X(t) and its images in X1 and between the velocities and
other quantities held at these points.

For planar extensional flow, it follows from Eqs. (2) and (4) that
ximag ¼ xlattice þ me_�t cosðhÞK� ne_�t sinðhÞH ;
yimag ¼ ylattice þ me�_�t sinðhÞKþ ne�_�t cosðhÞH ;

ð27Þ
where h is the orientation angle for the original lattice and _�t the Hencky strain. Here the integer pair (m, n)
denote the shift in the periodic image. The unit cell corresponds to the points m = 0, n = 0. However, in order
to close the boundary it is necessary to also include points on the top and righthand edges, that are respectively
the n = 1 and m = 1 images of the points on the bottom and lefthand edges. Thus each finite element node in
X(t) has an infinite set of image elements that lie outside X(t) with nodes given by images of the node points of
the original elements. Consequently in assembling the finite element matrices it is sufficient to ensure that the
contribution from each element is included once and once only, but it is does not matter which particular im-
age of the element is used. However, since each node has an infinite set of images it is necessary to define the
displacements between nodes on an element uniquely.

We shall define dxlattice = (dxlattice, dylattice) as the displacement between two neighbouring nodes in the
mesh, whose m = 0, n = 0 positions are displaced by dx. Since each point has an infinite set of images dis-
placed by integer multiples of Kp(t) and Hq(t), we can define dxlattice uniquely as the displacement between
images that lies in the space
dxlattice ¼ dppðtÞ þ dqqðtÞ with � K
2
< dp 6

K
2
; �H

2
< dq 6

H
2
: ð28Þ
In practice, for a reasonably fine mesh, the values of dp and dq will be well within these bounds. Using this
restriction on dp and dq we can find unique values of m and n such that
dx ¼ dxlattice þ mpðtÞKþ nqðtÞH :

The external extensional flow is imposed by the condition that the fluid velocity uimag of the (m, n) image is

given by the time derivative of the quotient map given in Eq. (26). Consequently the fluid velocity, uimag is
given by
uimag ¼ ulattice þ _�ðT u; T vÞ; ð29Þ

where T u ¼ me_�t cosðhÞK� ne_�t sinðhÞH and T v ¼ �me�_�t sinðhÞK� ne�_�t cosðhÞH . The velocity space V is given
by
V ¼ fvh 2 ðC0ðXÞÞ2 such that vhjT 2 P1 � P1 for all T 2 T h; vh biperiodic on oXg ð30Þ

where T h is the regular finite element triangulation of X for u and P1 is the space of polynomials in two vari-
ables of degree one. All other variables, including pressure and those governing fluid microstructure for a vis-
coelastic fluid, have the same value at each image point.

6. Mesh movement and reconnection

By moving each node with its velocity the connectivity of the grid is preserved. However, a major drawback
of using a Lagrangian mesh is that severe deformation-induced mesh distortions develop due to velocity gra-
dients within the fluid, which will degrade the accuracy of the finite element solution. A partial solution to this
problem is to retain the nodes as material points, but reconnect them in the way that produces a Delaunay
triangulation [8], the dual of the Voronoi tessellation. The Delaunay triangulation ensures global equiangular
triangulation in the sense that it maximises the minimum angle in any triangle [22].
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The Lagrangian mesh movement combined with Delaunay reconnection and the use of the equivalence
class to relate points with their images automatically reproduces the self replicating lattice of Reinelt and
Kraynik. This is illustrated in Fig. 2 where the evolution of a very simple mesh consisting of eight triangular
elements connecting four replicated points and their appropriate images under planar extension is shown. The
initial mesh is shown in Fig. 2a with the square unit cell (indicated by the bold lines) oriented at an angle
h = 31.7� to the x-axis. Figs. 2b and c show the lattice after a strain of 1

2
�p. The original unit cell (shown with

solid bold lines in Fig. 2b) is deformed into a parallelogram, however, we can reform an equivalent square unit
cell (shown with dashed lines), by replacing p with p + q. Between Figs. 2b and c we have performed a Del-
aunay reconnection. Although we have recovered a square lattice it is not the original lattice as now oriented
at 58.3� to the x-axis. Fig. 2d shows the lattice after a strain of �p = 0.962424. We can now recover the original
square unit cell by choosing appropriate images. A further Delaunay reconnection will reproduce the original
grid shown in Fig. 2d.

For the simulations containing particles we first generate a non-periodic grid by assigning the nodes on the
boundaries of the particles and the unit cell, but being careful to ensure that the cell boundaries are matched to
satisfy periodicity particularly when a particle crosses a boundary. We then use the ‘‘Triangle” grid generation
program [21] to generate an initial grid in the unit cell. Finally the boundary points are relabelled so that
equivalent points have the same label forming a periodic grid. The region inside the particles is meshed,
but since this region is constrained to perform a solid body rotation it does not need to be included in the
assembly. The only modification to mesh movement and reconnection is that the Delaunay reconnection is
Fig. 2. A simple example showing how the mesh movement and reconnection replicate the unit cell after a strain of �p = 0.9624. (a) The
initial lattice with a unit cell made up of eight triangular elements. (b) The lattice after a strain of 1

2
�p. The initial unit cell is shown with the

solid line, while the dashed line shows an equivalent square unit cell formed by replacing two of the elements with their images. (c) The
lattice after a strain of 1

2
�p following a Delaunay reconnection. (d) The lattice after a strain of �p = 0.9624. The original unit cell and lattice

can be recovered by a further replacement of two elements with their images and a further Delaunay reconnection.
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not allowed to reconnect an edge on a particle boundary. However edges on the boundary of the unit cell are
reconnected so that the outline of the original cell is lost. As noted earlier, due to the equivalence class it does
not matter which image of a triangle is used in the assembly as long as it included once and once only.

Once particles are introduced reconnection alone is not sufficient to maintain mesh quality and so we
employ the following methods of grid improvement during the calculation.

(1) At each time step the existing nodes are reconnected where necessary to form a Delaunay triangulation,
using an iterative algorithm.

(2) Edges shorter than a minimum length are removed by removing one of the nodes. This minimum length
depends upon the distance from the nearest particle boundary.

(3) Triangles with areas greater than a maximum area criterion that depends upon the distance from the
nearest particle boundary are split by introducing a new node at the centroid.

(4) After any addition or deletion of nodes the Delaunay triangulation is restored by running the iterative
algorithm again.

(5) When particles come close together the minimum length, and maximum area, measures in the region
between the particles are reduced to increase the resolution in this region.

The simulation algorithm is as follows:

(1) Initialization

� Generate an initial biperiodic mesh with the particles randomly positioned in the fluid (i.e Xi(t0),

i = 1, . . ., N) but not overlapping.
� Find eU0; P 0; eF0 and V0 by solving Eq. (24).
(2) Main loopGiven Dt and tmax, while t < tmax, do

� tn = tn�1 + Dt.
� Update mesh nodes.
� Update the computational domain configuration by using Eq. (2).
� Update the orientation and position of each particle using a first order finite difference approximation

of the kinematic equations (14) and (15).

XðtnÞ ¼ Xðtn�1Þ þ DtUðtnÞ;
HðtnÞ ¼ Hðtn�1Þ þ DtxðtnÞ:

� Apply the remeshing procedure.
� Find eUn; P n; eFn and Vn by solving Eq. (24).
7. Extensional viscosity and particle orientation

The main material function of interest is the bulk extensional viscosity defined as
hgi ¼ rxx � ryy

_�

D E
:

For a Newtonian fluid the planar extensional viscosity is equal to g = 4l (compared to 3l for uniaxial
extension). For a filled system the extensional viscosity depends upon both the spatial and (for non-circular
particles) orientation distributions of the particles, which evolve with increasing strain. In the limit of dilute
suspension where the particles are sufficiently far apart there exist analytic results with which we can
compare our simulations. We shall also consider the effects of increasing concentration on non-dilute
suspensions.

7.1. Circular particles

We begin by considering a single circular particle whose area is a fraction U = 0.1963 of the unit cell as
shown in Fig. 3. To establish spatial convergence we use four different uniform meshes as described in Table
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Fig. 3. The computational domain for the single particle problem. (a) The unit cell at time t = 0 in relation to its periodic images. (b) The
finite element mesh1 used in the calculations described in Table 1.
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1. Here, Nb are the number of nodes along each edge of the unit cell, Np the number of nodes around the par-
ticle, and Area min is the threshold value for the area of each triangle that is required by ‘‘Triangle”. Mesh1 is
shown in Fig. 3b. Table 1 shows the computed values of the extensional viscosity at t = 0 for these different
meshes. This is also shown graphically in Fig. 4 where we plot the extensional viscosity against the inverse of
the number of elements, Ne. The results of these four meshes lie approximately on a straight line, indicating
that the error in extensional viscosity is proportional to N�1

e , so that the spatial convergence for the exten-
sional viscosity is of order h2. The reason the convergence is order h2 and not order h is that the extensional
viscosity is proportional to dissipation, which is minimised in the variational statement of the finite element
method. In subsequent calculations we have used grids equivalent to mesh3.

The subsequent evolution of the extensional viscosity with strain is shown in Fig. 5a for U = 0.2827, 0.3318,
0.3848. The viscosity of the suspension oscillates with a period equal to half that of the self-replicating lattice,
due to the hydrodynamic interactions of the particle with its images. The maximum extensional viscosity
occurs when the particles are arranged in a square lattice, which occurs twice in each period �p since the lattice
configuration after a strain of 1

2
�p is square, but is rotated relative to its initial configuration. Since the exten-

sional viscosity is periodic, we can define the average extensional viscosity as the time average over a lattice
period. This is shown in Fig. 5b as a function of area fraction U. Note this periodicity only exists when we
have a single circular particle in the unit cell.

In a dilute suspension, the hydrodynamic interactions between the suspended particles are assumed to be
negligible, so that results may be obtained by considering a single isolated particle. For a dilute suspension of
circular particles there is a two-dimensional analogue obtained by Brady [5] of the Einstein viscosity, given by
leff = l(1 + 2U). Therefore the planar extensional viscosity g should tend to 4l(1 + 2U) in the limit U ? 0.
This is shown as the dashed line in Fig. 5b. It can be seen that the limiting behaviour at low area fraction does
Table 1
Details of the four finite element meshes used to calculate the extensional viscosity at t = 0 for a circular particle of area fraction
U = 0.1963

Mesh Nb Np Area min Elements, Ne Extensional viscosity, g

Mesh1 32 140 0.0025 1262 5.75953447
Mesh2 44 196 0.001 2296 5.75678527
Mesh3 62 277 5 � 10�4 4198 5.75501656
Mesh4 88 392 2.5 � 10�4 7680 5.75408069
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indeed agree with this asymptotic behaviour, but that hydrodynamic interactions produce a greater enhance-
ment of the viscosity with increasing area fraction. This nonlinear increase will depend upon particle distribu-
tion, which is set by the Kraynik–Reinelt lattice. Consequently the results will depend upon the lattice
structure chosen. The lattice also imposes a maximum area fraction, equal to p

ffiffiffi
5
p

=10 ¼ 0:702 for the particles
to not come into contact. The critical lattice used here has the largest maximum area fraction of all the square
and hexagonal replicating lattices investigated by Kraynik and Reinelt [16].

In order to remove the symmetry imposed by the lattice system we simulate the motion of multiple particles
per box, whose initial positions are chosen at random (subject to them not overlapping). The extensional vis-
cosity is no longer periodic but we can average over a long simulation to obtain average values. In Fig. 6a we
compare the average viscosity for 25 circular particles per cell with those obtained with a single particle at
equivalent area fractions. Both approach the low volume fraction asymptote as / ? 0, however, at larger area
fraction the 25 particle simulations show a significantly higher average extensional viscosity. This demon-
strates that hydrodynamic interactions between close groups of particles provide a disproportionate contribu-
tion to the bulk viscosity. This can be seen in Fig. 7 where we show a snapshot of the distribution of the
dimensionless principal stress difference, Dr,
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Fig. 7. Snapshot showing the distribution of the dimensionless principal stress difference Dr after a strain of 2.9. The scale runs from 0
(black) to 16 (white).
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Dr ¼ 1
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ðrxx � ryyÞ2 þ 4r2

xy

q
:

Except in regions close to the suspended particles Dr is approximately equal to 4, its value in the absence of
particles. However, at this particular snapshot the maximum value of Dr is more than four times this value
and is found in the gaps between close particles (see Fig. 8).

The bulk viscosities obtained from the 25 particle simulations are found to be in good agreement with those
obtained by Hwang and Hulsen [12] and D’Avino et al. [7] that use different methods for imposing the bound-
ary conditions on extensional flow. The results obtained by Hwang et al. are shown in Fig. 6a. Although the
bulk viscosity values are in approximate agreement, we find qualitatively different results for the particle dis-
tributions. Both Hwang and Hulsen [12] and D’Avino et al. [7] find that the average distance in the direction of
the horizontal (extensional) axis between nearest neighbours becomes slightly larger than the distance in the





Fig. 9. The motion of a single elliptical particle displayed together with 3 of its images under planar extensional flow at (a) � = 0; (b)
� = 0.45 (approximately half the lattice period); (c) � = 0.96 (approximately one lattice period); (d) � = 3. The particle rotate from its initial
orientation at angle H0 = 2.124 (=121.7�) to alignment with the extensional axis (H = p).
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Fig. 10. (a) Plot of the evolution of the orientation angle, H of elliptical particles with U = 0.0942 initially aligned at H0 = 2.124 for
aspect ratios from 1 to 4. (b) Comparison between the numerical results for U = 0.0942 and analytical results for U ? 0 for aspect
ratios 2 and 3.
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orientation from an initial angle of H0 = 2.124 for ellipses of aspect ratios 1–4 at an area fraction of
U = 0.0942. The orientation angle of the circular particle oscillates about its initial orientation, whereas the
elliptical particles rotate towards H0 = p. In Fig. 10b the evolution of H for the ellipses of aspect ratios 2
and 3 are compared to analytical solution in the dilute limit. (The aspect ratio 4 result is left off for clarity.)
It can be seen that the only effect of finite area fraction is to introduce a periodic variation on the behaviour
predicted by the analytical solution.

The effect of particle rotation is also seen in the transient extensional viscosity, which is shown in Fig. 11a.
However, once the particle has become aligned with the extensional axis we can calculate an average exten-
sional viscosity over a lattice period as for circular particles. This is shown in Fig. 11b for an area fraction





Fig. 12. The motion of seven elliptical particles in a unit cell displayed together with 3 images of the unit cell (a) � = 0; (b) � = 0.45
(approximately half the lattice period); (c) � = 0.96 (approximately one lattice period); (d) � = 3; (e) � = 6; (f) � = 12. The particles rotate
towards alignment with the extensional axis but are dispersed due to hydrodynamic interactions.
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simulations.
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rately the region between the particles, where there are large lubrication forces keeping the particles apart since
we have not introduced an artificial repulsive forces between particles.
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Fig. 14. The extensional viscosity as function of strain for the simulations of Fig. 13.
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8. Conclusion

In this paper we describe a novel direct numerical simulation technique for particle suspensions under pla-
nar extension flow using a biperiodic self-replicating lattice. This provides a simulation in a truly periodically
replicable cell that can be run for arbitrarily large strains. The quotient map representation combined with the
Lagrangian finite element method provides a natural way to implement the Kraynik–Reinelt lattice in a man-
ner that is free of any special treatment of cell boundaries. The method can be applied to particles of any shape
or mixture of shapes.

The simulation results are found to be in good agreement with analytical solutions for the dilute limit. For
circular particles we recover the g = 4l(1 + 2U) extensional viscosity in the limit U ? 0. This approximation
remains accurate up to U 	 0.1, but at higher area fractions hydrodynamic interactions produce a nonlinear
increase in viscosity. For anisotropic particles the fibres rotate towards alignment with the extensional axis,
but with a dispersed orientation distribution due to hydrodynamic interactions.

Although in this paper we have confined our attention to Newtonian fluids we have also applied our
method to suspensions in viscoelastic fluids. In viscoelastic fluids our method has the further advantage of
enabling the constitutive equation to be solved in the co-deforming frame of the fluid [10]. This enables the
constitutive equation to be solved as ordinary differential equations along characteristics. Furthermore, by
replacing the traction force around the particles with a finite element solution for the interior we can analyse
suspensions of deformable particles and emulsions.

The simulations in this paper are for a two-dimensional fluid where the particles are effectively infinitely
long cylinders. For planar extensional flow this method could be extended to three-dimensional suspensions
by replacing triangular elements with tetrahedral elements. Recently Morrison and Rallison [18] have
extended the Lagrangian method of [10] to fully three-dimensional time-dependent viscoelastic flows and have
successfully simulated viscoelastic flow around a sedimenting sphere. However, for Newtonian fluids the addi-
tional complexity of reconnecting a three-dimensional compared to a two-dimensional grid makes the fully
Lagrangian scheme computationally expensive compared to other methods such as Arbitrary Lagrangian–
Eulerian (ALE) schemes that produce less mesh distortion. Though for viscoelastic fluids with complex con-
stitutive models this may be outweighed by simplification of the stress calculation for Lagrangian methods.
Another restriction is that our method relies on the existence of a periodically self-replicating lattice and so
cannot be used for uniaxial extension for which no such lattice exists.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/
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